
Abstract. Two methods for the evaluation of expectation
values with approximate two-component relativistic
functions are analysed. The ®rst of them is based on
the change of picture for the operator whose expectation
value is to be calculated and associated with approxi-
mations leading to the given two-component relativistic
wave function. This method, though hardly used in
numerical calculations, gives the expectation values that
directly re¯ect the accuracy of the wave function used
for their calculation. The second method, most com-
monly used in calculations, neglects the picture change
and is shown always to introduce an error of the order of
a2, where a is the ®ne structure constant. This error is
present independently of the accuracy of the approxi-
mate two-component wave function. The perturbation
formalism developed in this paper is illustrated by
calculations of relativistic corrections to the expectation
values of rÿ1 for arbitrary states of hydrogenic ions.
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1 Introduction

It is commonly accepted that the true relativistic theory
of many-electron systems should be derived from
quantum electrodynamics (QED) [1] and based on the
four-spinor representation of the electron-positron ®eld
operators. The lowest-order approximations to QED
lead to commonly used Dirac-Coulomb (DC) and Dirac-
Breit (DB) many-electron Hamiltonians [2, 3, 4] whose
e�cient implementations in atomic and molecular codes
are already available [5, 6, 7, 8]. However, the prospect
of routine four-component calculations for sizable

molecules appears to be rather remote. This prompts a
search for simpli®ed relativistic methods of high credi-
bility.

The main computational problems of the four-com-
ponent relativistic methods in molecular calculations
arise owing to the demand for the accurate enough
representation [8, 9] of what is usually referred to as the
small component of the Dirac four-spinor [10]. The
truncated basis set expansion techniques may then lead
to prohibitively large sizes even for relatively small sys-
tems. A solution to this problem can be achieved by
passing from the four-component formalism to the two-
component approximation, which is, as a matter of fact,
a hidden way of handling the small component of four-
spinors followed usually by some additional approxi-
mations.

The earliest attempt at relativity in terms of two-
spinors was that of Pauli [11] and gives what is known as
the SchroÈ dinger-Pauli Hamiltonian, which is plagued by
a number of unpleasant analytic features [10, 12, 13, 14].
A way to avoid or to circumvent the appearance of es-
sentially singular operators, which arise in the case of the
straightforward elimination of the small component [12,
13], has been proposed by Douglas and Kroll [15] and
given a ®rm QED background in a series of papers by
Sucher et al. [3, 4, 16]. This method was adapted for use
in quantum chemistry of many-electron systems in the
pioneering papers of the late Professor AlmloÈ f et al. [17,
18, 19] and by Hess et al. [20, 21, 22] and made into a
highly attractive and accurate computational tool by
Hess and his co-workers [23]. Its success is mainly due to
partial in®nite summation of the relativistic perturbation
series in a2 (a � 1=c is the ®ne structure constant and c
is the velocity of light, c � 137:036 a:u:), which gives
operators free of essential singularities. This is achieved
through the initial unitary transform of the Dirac
Hamiltonian [3, 4, 15, 19, 20, 24] by using the free-par-
ticle (fp) Foldy-Wouthuysen (FW) transformation [25].

Another possibility of using approximate regular
relativistic Hamiltonians goes back to Durand et al. [26,
27] and Heully et al. [28] and has been more recently
made into a successful computational tool by Snijders
et al. [29, 30, 31]. When considered in their initial four-
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component form [32], the so-called regular approxima-
tion (RA) Hamiltonians [29, 30, 31] can be shown to
follow from some FW transform of the Dirac Hamil-
tonian [33].

The spirit of the two-component theory prevails also
in the case of the so-called direct perturbation theory
(DPT) developed by Rutkowski [34] and by Kutzelnigg
and his co-workers [12, 35, 36]. Owing to the use of the
Sewell metric [37] the DPT approach permits the exact
series expansions in powers of a2 for operators, eigen-
energies, and eigenfunctions. Thus, the DPT results can
be used as a reference for qualifying other approximate
methods of relativistic quantum chemistry.

The problem to be discussed in this paper relates to
the calculation of the expectation value of operators
other than the Hamiltonian. Obviously, performing any
unitary transformation U on the Dirac Hamiltonian
H0 of a particle moving in some potential V [10, 24]:

H0 � cap� bc2 � �V ÿ c2�I � V crp
crp V ÿ 2c2

� �
; �1�

where I stands for a 4� 4 unit matrix, will not a�ect the
energy eigenvalues of the Dirac equation:

H0W0 � �0W0; �2�
where the energy eigenvalue �0 is shifted by ÿc2 with
respect to the usual relativistic eigenenergy. In all
equations presented in this paper we assume that atomic
units are used.

The solution of the unitarily transformed eigenvalue
problem:

HU
0 WU

0 � �0WU
0 ; �3�

where

HU
0 � U yH0U ; �4�

will give transformed solutions:

WU
0 � U yW0: �5�

Suppose now that the relativistic system described by the
Hamiltonian (1) is a�ected by some external perturba-
tion. For the sake of simplicity we assume that the
perturbation operator, H1, is fully diagonal and spin-
independent, i.e.,

H 1 � q� I ; �6�
where q is some one-electron operator, which may
depend on the particle's coordinates and momenta.
Thus, the perturbed Dirac Hamiltonian reads:

H�l� � H0 � lH1 � V � lq crp
crp V � lqÿ 2c2

� �
; �7�

and the parameter l is used to order the perturbation
series. The expectation value of the perturbation oper-
ator (6) in the state W0 follows then from the Hellmann-
Feynman [38] theorem:

hW0 j H1 j W0i � �1 � @

@l
��l�

� �
l�0

; �8�

where ��l� is the l-dependent eigenvalue of the per-
turbed problem:

H�l�W�l� � ��l�W�l�: �9�
This is the result obtained prior to any transformations
and/or approximations to the Dirac Hamiltonian. The
equivalent result for �1 calculated with transformed four-
component spinors (5) will be:

�1 � hWU
0 j U yH1U j WU

0 i
� hUWU

0 j H1 j UWU
0 i; �10�

i.e. the unitary transformation of the Hamiltonian will
induce what is known as the change of `picture' [25],
which amounts to replacing H1 by its unitary transform
U yH1U while using the transformed wave function WU

0 .
The second line of this expression says that if H 1 is used
in its original non-transformed form, the wave function
WU

0 must be back transformed to the original represen-
tation. This means that the expectation value de®ned as:

~�1 � hWU
0 j H1 j WU

0 i �11�
has no obvious relation to either (8) or (10). Although
Eq. (10) is a trivial consequence of the matrix calculus, in
quite a few cases the expectation values obtained from
approximate relativistic schemes are calculated accord-
ing to Eq. (11). Since the results obtained from Eq. (11)
appear to be quite reasonable [23, 39], the error
introduced by simultaneously using two di�erent repre-
sentations needs to be thoroughly investigated.

The relation between (8), (10) and (11) has recently
been studied numerically by KelloÈ et al. [39]. Similar
considerations were carried out much earlier by Bae-
rends et al. [40] who investigated the relativistic atomic
orbital contractions (expansions) and the proper way of
de®ning them in terms of the expectation value of the
coordinate operator in di�erent pictures. One should
also refer to numerous discussions with Professors
Faegri Jr., Gropen, Hess, and Nieuwpoort during the
Workshop held in Troms� in 1992 [41]. The paper in its
®nal shape bene®tted from recent discussions with Pro-
fessor Baerends and from comments by the unknown
referee. The present study attempts to give the analysis
of errors introduced by replacing either of Eqs. (8), (10)
by Eq. (11). It will be shown that for the two-component
approximate relativistic methods currently in use the
error that follows from adopting Eq. (11) as a basis for
the calculation of expectation values, is of the order of
a2. This will be done by ®rst deriving the exact DPT
relativistic corrections to non-relativistic expectation
values of the operator q. Then, several other methods
will be analysed by comparing their results with the
exact DPT corrections.

2 Relativistic DPT corrections to expectation values

The so-called DPT of relativistic e�ects o�ers a general
framework for the consideration of relativistic correc-
tions to expectation values. It has been shown by
Rutkowski [34] and Kutzelnigg [12] that by changing the
metric from the usual one [10]:

261



hW0 j W0i � hw0 j w0i � hv0 j v0i � 1; �12�
where w0 and v0 denote the `large' and `small' compo-
nents of W0 [10], respectively, to that of Sewell [37]:

hW0 j W0i � hw0 j w0i � a2hv0 j v0i � 1; �13�
i.e. by the transformation:

W0 � w0

v0

� �
) W0 � w0

v0

� �
� 1 0

0 c

� �
w0

v0

� �
; �14�

the Dirac equation can be written in a fully equivalent
form:

H0W0 � �0SW0: �15�
The new operators entering the transformed Eq. (15) are
de®ned by:

H0 � H 00 � a2H20 �16�
S � S00 � a2S20; �17�
where

H00 � V rp
rp ÿ2

� �
; H 20 � 0 0

0 V

� �
�18�

and

S00 � 1 0
0 0

� �
; S20 � 0 0

0 1

� �
; �19�

and make this equation manifestly expandable in the a2

relativistic perturbation series, i.e.

�0 � �00 � a2�20 � a4�40 � . . . ; �20�
w0 � w

00 � a2w
20 � a4w

40 � . . . ; �21�
v0 � v00 � a2v20 � a4v40 � . . . : �22�
The 0th-order solution, w

00 � w00, for the large compo-
nent of W0 is the solution of the non-relativistic 2� 2
SchroÈ dinger equation:

h00w00 � �00w00; �23�
where

h00 � 1

2
p2 � V : �24�

By applying the same procedure to the perturbed Dirac's
Eq. (9) one obtains the following counterpart of Eq. (15):

H�l�W�l� � ��l�SW�l�; �25�
where

H�l� � H00 � lH01 � a2H20 � a2lH21 �26�
and

H 01 � q 0
0 0

� �
; H 21 � 0 0

0 q

� �
; �27�

while Eqs. (20±22) are replaced by the corresponding
double perturbation expansions involving solely even
terms in a:

� � ��a2; l� � �00 � l�01 � a2�20 � a2l�21

� a4�40 � � � � ; �28�
w �w�a2; l� � w

00 � lw
01 � a2w

20 � a2lw
21

� a4w
40 � � � � ; �29�

v � v�a2; l� � v00 � lv01 � a2v20 � a2lv21 � a4v40

� � � � : �30�
By virtue of Eq. (28) the expectation value de®ned by (8)
becomes:

�1 � �1�a2� � �01 � a2�21 � . . . ; �31�
where the leading term is the non-relativistic expectation
value of the operator q,

�01 � hw00 j q j w00i � hw00 j q j w00i: �32�
The exact a2-order relativistic correction �21 to the non-
relativistic result (32) can be derived by using a double
perturbation version of DPT [35] and reads:

�21 � 2Rehw00 j h20 j w01i � hw00 j h21 j w00i; �33�
where the 2� 2 matrix operators h20 and h21 are de®ned
by:

h20 � 1

4
rp�V ÿ �00�rp; �34�

and

h21 � 1

4
rp�h01 ÿ �01�rp; �35�

h01 � q: �36�
The ®rst-order perturbed function w

01 � w01, i.e. cor-
rection to the large component arising from the external
perturbation H 01�q� follows from the usual perturbation
expansion for the solution of the q-perturbed SchroÈ -
dinger equation:

�h00 � lh01�w0�l� � �0�l�w0�l�: �37�
where w

0�l� � w0�l� since Eq. (37) is of the zeroth-order
in a2. With the expansion:

w
0�l� � w0�l� � w

00 � lw
01 � . . . � w00 � lw01 � . . . ;

�38�
one obtains the ®rst-order solution of the form:

w
01 � R00�qÿ �01�w00

; �39�
where R00 is the reduced resolvent operator for the
unperturbed SchroÈ dinger equation:

R00 � P 00

�00 ÿ h00
� 1ÿ j w00ihw00 j

�00 ÿ h00
: �40�

The DPT expansion of the perturbed Dirac equation
shows that the four-component problem can be, at least
formally, reduced to the perturbation solution of the
2� 2 l-dependent equation of the form:
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h�a2; l�w�a2; l� � ��a2; l�w�a2; l�; �41�
by means of the double perturbation expansion. The
corresponding expansions of ��a2; l� and w�a2; l� are
given by Eqs. (28) and (29), respectively, and

h�a2; l� � h00 � lh01 � a2h20 � a2lh21 � . . . : �42�
The higher-order terms of (42) can be derived by
manipulating the initial perturbed Dirac equation ac-
cording to the DPT scheme. One should point out that
this is essentially a hidden way of handling the small
component of the Dirac wave function. The problem of
the appearance of essentially singular operators can be
handled in a way devised by Kutzelnigg [42].

For the purpose of the present study the major
advantage of the two-component Eqs (41, 42) and the
resulting perturbed energy formulae of the form (33) is
that they permit direct comparison of these exact results
with those that follow from a variety of approximate
two-component Hamiltonians. All of these two-compo-
nent Hamiltonians can be expressed as given by Eq. (42)
although the form of various perturbation terms in the
corresponding h�a2; l� operators will be in general
di�erent for di�erent methods. Moreover, the DPT
expansion leads to the presence of h21 (and of the cor-
responding operators of the higher order in a2) directly
in h�a2; l�. This results from including the perturbation
operator in the Dirac Hamiltonian prior to any attempt
to separate the large and small components. In other
words, the expectation value of q which follows from the
perturbation expansion of Eq. (41) re¯ects the change of
`picture' as expressed by Eq. (10). The same applies in
the case of approximate two-component Hamiltonians;
the presence of the counterpart of the h21; h41; . . . oper-
ators will depend on whether the change of picture is
taken into account or not.

3 Expectation values in approximate two-component
theories

3.1 Approximate two-component Hamiltonians
and external perturbations

A two-component method M , derived from the Dirac
theory under some additional assumptions, can be
de®ned in terms of a two-component Hamiltonian hM ,
which is assumed to be analytic in a2, at least through
the order of interest. In the absence of the external
perturbation (l � 0) such a Hamiltonian, hM �a2; 0�, can
be written in terms of the expansion:

hM �a2; 0� � h00 � a2h20M � . . . ; �43�
where the leading term is assumed to be the non-
relativistic SchroÈ dinger Hamiltonian and h20M is a coun-
terpart of h20 for the given approximate method M . In
the presence of the external perturbation, which is
included prior to any approximations leading from the
Dirac Hamiltonian to (43), the same route will bring
about the (a; l)-dependent two-component Hamiltonian
of the method M :

hM�a2; l� � h00 � lh01 � a2h20M � a2lh21M � � � � � �44�
By applying the double perturbation theory expansion
to the eigenfunctions and eigenenergies of (44) one
obtains the following counterpart of Eq. (31):

�1M � �1M�a2� � �01 � a2�21M � � � � ; �45�
where �01 is the non-relativistic result and

�21M � 2Rehw00 j h20M j w01i � hw00 j h21M j w00i: �46�
As already mentioned the presence of h21M in (44) re¯ects
the fact that the change of picture has been taken into
account. However, given some approximate two-com-
ponent method derived from the Dirac theory, one may
consider discarding its two-component origin and
add the external perturbation directly to (43). This is
equivalent to neglecting the change of picture and
treating the expectation value problem in the same way
as in non-relativistic theories. The resulting l-dependent
Hamiltonian, ~hM�a2; l� will then be:

~hM�a2; l� � h00 � lh01 � a2h20M � . . . ; �47�
and will not contain any operators that would mix the
external and relativistic perturbations, i.e. which would
lead to operators of the h21 type. Nevertheless, the
double perturbation expansion of the eigenvalue prob-
lem arising from the Hamiltonian (47) leads to:

~�1M � �1M�a2� � �01 � a2~�21M � . . . ; �48�
with non-vanishing ®rst-order relativistic correction ~�21M
given by:

~�21M � 2Rehw00 j h20M j w01i: �49�
It is of some interest to note that the result (49) can
be alternatively de®ned in terms of l-dependent non-
relativistic solutions (37):

~�21M �
@

@l
hw0�l� j h20M j w0�l�i

� �
l�0 � 2Rehw00 j h20P j w01i:

�50�
This expresses the usual way of the calculation of
relativistic corrections to non-relativistic expectation
values by means of the numerical evaluation of the
corresponding derivative [43, 44]. Let us stress that this
result follows directly from the perturbation treatment
of the Hamiltonian (47) obtained by adding a posteriori
the external perturbation term to the unperturbed two-
component Hamiltonian (43).

In what follows we shall consider two particular cases
of the theory developed so far and derive expressions for
deviations of �21M and ~�21M from the exact value of �21

obtained in Sect. 2 by using the DPT approach. The ®rst
case is the calculation of relativistic corrections to ex-
pectation values in the so-called Pauli approximation
�M � P� [10, 45]. It is of importance that several ap-
proximate two-component Hamiltonians have this ap-
proximation as the leading term of their a2-expansion [3,
4, 20, 24]. Hence, all conclusions obtained for the Pauli
approximation will be in general valid for a variety of
other approximate Hamiltonians. The second case refers
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to a series of two-component Hamiltonians of RA [31,
32] to the treatment of the Coulomb singularities. The
lowest, 0th-order, regular approximation (M=ZORA)
[29, 30] does not, however, contain all terms of the a2

order, i.e. the a2-expansion of the ZORA Hamiltonian
does not contain all terms of the Pauli operator. Thus,
even the change of picture will not recover all terms of
the DPT ®rst-order relativistic correction (46) to the
expectation value of h01.

3.2 The Pauli approximation

The use of the Pauli approximation is one of the
traditional ways [43, 44, 45, 46] of adding the ®rst-order
relativistic correction to expectation values of di�erent
operators. Let us ®rst discuss the case when the picture
change is taken into account. If one considers the
external perturbation H 1 to the Dirac Hamiltonian prior
to any approximation for the treatment of relativistic
e�ects, the result becomes equivalent to that of DPT.
Since within the present assumptions concerning H1 the
perturbation is just a modi®cation of the external
potential,

V ! V 0�l� � V � lq; �51�
one can derive the operators which enter Eq. (44) from
the two-component l-dependent Pauli Hamiltonian
�M � P�:

hP �a2; l� � 1

2
p2 � V 0 � a2h2P �l� � h00 � lh01 � a2h2P �l�;

�52�
where

h2P �l� �
1

4
rpV 0rpÿ 1

8
p4 ÿ 1

8
�p2V 0 � V 0p2�: �53�

Upon substituting V 0, one obtains:

h2P �l� � h20P � lh21P ; �54�
where

h20P �
1

4
rpV rpÿ 1

8
p4 ÿ 1

8
�p2V � Vp2� �55�

is the usual Pauli operator for the system without
additional perturbations, and

h21P �
1

4
rpqrpÿ 1

8
�p2q� qp2�: �56�

As long as the non-relativistic reference state w00 and the
non-relativistic ®rst-order perturbed wave function w01

are the corresponding exact solutions [47], the �21P
correction, i.e. the ®rst-order relativistic correction to
the expectation value of the operator q calculated in the
Pauli approximation:

�21P � 2Rehw00 j h20P j w01i � hw00 j h21P j w00i; �57�
is fully equivalent to the DPT result of Eq. (33). The
corresponding proof is given in Appendix A. As
indicated there, this proof strongly relies on the assump-
tion that the exact non-relativistic solutions w00 and w01

are available.

The equivalence between �21P and �21 is a natural
consequence of the change of `picture' as expressed by
Eq. (10) and accounted for by using V 0 in place of V in
Eq. (53). Had we not taken the picture change into ac-
count, the corresponding equivalent of the two-compo-
nent Hamiltonian (47) would have the form:

~hP �a2; l� � h00 � lh01 � a2h20P ; �58�
and would lead to the following ®rst-order relativistic
correction to the expectation value of q:

~�21P � 2Rehw00 j h20P j w01i: �59�
According to the formulae derived in Appendix A with
the assumption of the exactness of both w00 and w01,
Eq. (59) di�ers from the DPT correction �21 of Eq. (33):

�21 ÿ ~�21P �
1

4

D
w00 j rpqrpÿ 1

2
� p2q� qp2� j w00

E
; �60�

i.e. the di�erence will occur already in terms of the order
of a2 and will in general vanish only if p commutes with
q. The non-zero value of the di�erence (60) is a
consequence of not changing the `picture' for the
operator q.

The present considerations of the Pauli approxima-
tion have a more general character. It is rather common
that the calculation of expectation values for di�erent
operators in approximate two- or one-component rela-
tivistic methods is based on the formalism borrowed
from non-relativistic theories. Once the wave function,
say UM � UM �a2�, obtained by some approximate two-
or one-component relativistic method M, is known, the
expectation value of the given (non-relativistic) operator
Q is usually computed as hUM j Q j UM i. The formal
expansion of UM �a2� into a power series in a2 leads to
expressions for relativistic corrections to the non-rela-
tivistic expectation value of Q; hU0 j Q j U0i, where U0 is
the non-relativistic solution. It follows from derivations
presented in this section that the expectation value
hUM j Q j UM i will always di�er from the exact DPT
result already in terms of the order of a2. The a2-order
error in (59) can only be removed by the change
of `picture', i.e. by replacing Q by its appropriate
transformed counterpart.

3.3 The regular Hamiltonian approximations

The lowest (zeroth-) order Hamiltonian of the regular
approximation (ZORA) [29, 30, 31] in the absence of the
perturbation h01 can be derived by considering the
`metric perturbation' expansion [32] of the Dirac equa-
tion and reads:

hZORA � hZORA�l � 0� � V � 1

2
rpBrp; �61�

where

B � B�a2� � 1

1ÿ 1
2 a

2V
� 1� 1

2
a2BV : �62�
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The change of picture can be achieved simply by adding
the perturbation (6) to the Dirac Hamiltonian prior to
approximations that result in the ZORA Hamiltonian
[33], or equivalently, by using the substitution given by
Eq. (51). Then,

hZORA�l� � V 0 � 1

2
rp

1

1ÿ 1
2 a

2V 0
rp

� h00 � lh01 � a2h20ZORA � a2lh21ZORA � . . . ;

�63�
where

h20ZORA �
1

4
rpV rp �64�

and

h21ZORA �
1

4
rpqrp: �65�

The l-dependent ZORA Hamiltonian acquires the
mixed terms of the a2l order and leads to the following
form of the lowest order relativistic correction:

�21ZORA � 2Rehw00 j h20ZORA j w01i � hw00 j h21ZORA j w00i;
�66�

which can be converted into

�21ZORA � 2Rehw00 j h20 j w01i � 1

2
�00Rehw00 j p2 j w01i

� 1

4
hw00rpqrp j w00i: �67�

In spite of the change of picture for the perturbation
operator h01, this result di�ers from the exact DPT value
of the correction, i.e.

�21 ÿ �21ZORA �ÿ
1

2
�00Rehw00 j p2 j w01i

ÿ 1

4
�01hw00 j p2 j w00i; �68�

since neither h20ZORA nor h21ZORA are equivalent to the
corresponding operators appearing in the DPT expan-
sion. Moreover, let us also note that neither h20ZORA nor

h21ZORA are equal to the operators h20P and h21P , respec-

tively, obtained in the Pauli approximation [see Eqs. (55)
and (56)]. This follows from the fact that the ZORA
Hamiltonian does not contain all terms necessary for its
reduction to the Pauli approximation [29, 30, 33]. This
de®ciency of the ZORA Hamiltonian is remedied by
passing to the so-called ®rst-order regular approxima-
tion (FORA) [29, 30, 33].

Once the one-electron ZORA eigenvalue problem in
the absence of the external perturbation:

hZORAwZORA � �ZORAwZORA; �69�
is solved with the normalization condition
hwZORA j wZORAi � 1, one may try to evaluate the
expectation value of h01 in the usual (non-relativistic)
way, ignoring the fact that the two-component ZORA
Hamiltonian follows from approximate treatment of the
four-component equation. Then,

~�1ZORA � hwZORA j h01 j wZORAi; �70�
and, at least formally, can be expanded in a power series
in a2:

~�1ZORA � ~�01ZORA � a2~�21ZORA � � � � ; �71�
where by de®nition ~�01ZORA � �01 is the non-relativistic
expectation value of h01 and

~�21ZORA � 2Rehw00
ZORA j h01 j w20

ZORAi; �72�
with w00

ZORA � w00 being the non-relativistic solution and
w20
ZORA obtained from the perturbation treatment of the

a-expanded ZORA Hamiltonian (61) [33]:

hZORA � h00 � a2h20ZORA � � � � : �73�
According to the derivations presented in Sect. 3:1, the
double perturbation treatment of the Hamiltonian

~hZORA�l� � hZORA � lh01 � h00 � lh01 � a2h20ZORA � . . . ;

�74�
which follows from the assumption that no picture
change is involved, leads to the following equivalent of
Eq. (72):

~�21ZORA � 2Rehw00 j h20ZORA j w01i; �75�
where w01 is given by Eq. (39). It is important to note
that, similarly to the Pauli-type Hamiltonian (58), the
ZORA operator (74) will not involve terms which would
mix the relativistic and h01 perturbations. By using the
method described in Appendix A, one ®nds that ~�21ZORA
will di�er from the exact value �21 obtained from the
DPT expansion:

�21 ÿ ~�21ZORA �ÿ
1

2
�00Rehw00 j p2 j w01i

� 1

4
hw00 j rp�qÿ �01�rp j w00i: �76�

This di�erence arises from two di�erent sources. One of
them is that no change of picture is taken into account
while de®ning the Hamiltonian (74). The second source
follows from the incompleteness of the ZORA Hamil-
tonian in terms of the order of a2.

The FORA Hamiltonian (see e.g. [33]) when ex-
panded in the a2 series contains all terms of the Pauli
operator (55). Thus, all discussion of the Pauli approx-
imation applies to the FORA Hamiltonian with the
following consequences:

�21FORA � �21P ; ~�21FORA � ~�21P �77�
where the ®rst equivalence corresponds to the `change of
picture', i.e. to the use of Eq. (51). The FORA correction
�21FORA becomes therefore equal to the exact DPT result;

di�erences between DPT and the FORA approximation
will occur only in terms of the fourth- and higher-orders
in a. The second equivalence in Eq. (77) arises when the
perturbation lh01 is directly added to the FORA
Hamiltonian. This is also the result that one obtains
by expanding the expectation value of h01 in the FORA
state wFORA,
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~�1FORA � hwFORA j h01 j wFORAi; �78�
into the a2 series:

~�21FORA � 2Rehw00
FORA j h01 j w20

FORAi; �79�
where the wave function symbols are analogous to those
used when discussing the ZORA approximation [see
Eq. (72)] and the two-component FORA wave function
is assumed to be normalized as hwFORA j wFORAi � 1.
The approximation expressed by Eq. (79) su�ers from
the use of h01 in the initial `picture' and carries exactly
the same error as the one present in ~�21P . Thus, one can
conclude that the FORA expectation value of h01 (78)
will always be in error already in terms of the order of
a2.

The FORA Hamiltonian certainly represents im-
provement over the ZORA approximation, for at least it
contains all terms through the order of a2. However, its
form is de®nitely more cumbersome than that of the
ZORA Hamiltonian. A hint at how to improve upon
ZORA results without excessive e�ort follows from the
consideration of the initial four-spinor, WCPDÿ4 [32],
whose large component is the ZORA wave function and
the small component, vZORA, is given by:1

vZORA �
1

2
aBrpwZORA; �80�

and thus [32],

WCPDÿ4 � wZORA
1
2 aBrpwZORA

� �
: �81�

On considering (81) as an approximation to Dirac's
four-spinor W0 of Eq. (14), one can approximate the
expectation value (8) by

�1CPDÿ4 �
hWCPDÿ4 j H1 j WCPDÿ4i
hWCPDÿ4 j WCPDÿ4i

� hwZORA j h01 j wZORAi � hvZORA j h01 j vZORAi
hwZORA j wZORAi � hvZORA j vZORAi

:

�82�
Upon expanding (82) into power series with respect to
a2, one obtains the ®rst relativistic correction to �01:

�21CPDÿ4 � 2Rehw00 j h01 j w20
ZORAi

�
D
w00 j 1

4
rp�h01 ÿ �01�rp j w00

E �83�

and

�21 ÿ �21CPDÿ4 � ÿ
1

2
�00Rehw00 j p2 j w01i: �84�

The calculation of the expectation value by using Eq. (82)
corresponds to renormalization of the ZORA solution
and can be referred to as the scaled ZORA (s-ZORA)
approach [30, 31, 49]. The same technique used for the

total Dirac's Hamiltonian leads to the scaled expression
for energy which gives the exact Dirac's energy for
hydrogenic systems [49].

Yet another approximation related to (82) can be
contemplated. From the de®nition of the expecta-
tion value �1CPDÿ4 we learn that the true four-spinor
will involve normalization factor of the form
�hwZORA j wZORAi � hvZORA j vZORAi�ÿ1=2. Thus, one
can argue that the ZORA expectation value of h01 as
given by Eq. (70) should be replaced by:

~�1sÿZORA �
hwZORA j h01 j wZORAi

hwZORA j wZORAi � hvZORA j vZORAi
: �85�

It is worthwhile pointing out that this de®nition of
~�1sÿZORA corresponds simply to the evaluation of the
expectation value with renormalized ZORA density [49].
On expanding ~�1sÿZORA into a power series in a2 one
®nds:

�21 ÿ ~�21sÿZORA �ÿ
1

2
�00Rehw00 j p2 j w01i

� 1

4
hw00 j rpqrp j w00i; �86�

which di�ers from the corresponding results for �21ZORA of
Eq. (67) and �21CPDÿ4 of Eq. (84). Since the scaled ZORA
expectation values as de®ned by Eq. (85) are essentially
available as a by-product of standard ZORA calcula-
tions, any improvement over the result of the approx-
imation (75) is worth investigating.

3.4 The Douglas-Kroll and related approximations

Over the past decade a great deal of attention has been
given to what is called the Douglas-Kroll approximation
[15], which has developed into one of the most powerful
computational techniques of relativistic quantum chem-
istry [17, 20, 22]. The method has been analysed by
Sucher et al. [3, 4, 16]. If the DK Hamiltonian is
expanded into the a2 series then the leading relativistic
term corresponds to the Pauli approximation (55), which
was analysed in Sect. 3.2 and Appendix A. Hence, the
same conclusions as those reached for the Pauli approx-
imation apply to the DK method.

It follows from our earlier considerations that once
the DK expectation value of h01 is de®ned as the average
of this operator,

~�1DK � hwDK j h01 j wDKi; �87�
in DK state wDK , which satis®es the l-independent DK
eigenvalue equation [3, 4, 15, 20], the error involved in
this approximation occurs already in terms of the order
of a2 and is the same as that for the corresponding
scheme within the Pauli approximation [see Eq. (60)].
This re¯ects again the fact that no `picture' change has
taken place while de®ning the expectation value by
Eq. (87). The present conclusion concerning the error
involved in calculations of ~�1DK from Eq. (87) is at
variance with the earlier analysis of the problem [39].

The inaccuracies involved in using the de®nition (87)
can be removed by including the perturbation operator

1 The four-component ZORA function is referred to by the Chang,
PeÂ lissier, and Durand approximation (CPD), which follows from
treating the a2hv0 j v0i term in Eq. (13) as a separate `perturbation'
[32]
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h01 in the external potential V . This leads to a rather
complicated form of the perturbation operator [39] in
the new picture. Its use, however, guarantees that the
relativistic corrections to �01 will correspond to the same
level of accuracy as that for the DK wave function.
Obviously, the magnitude of the error resulting from the
use of (87) will depend on the operator h01 and on
nuclear charges of atoms in the given system. For h01,
operators, which assume large values far from nuclei,
this error appears to be relatively small for atoms as
heavy as gold (Z � 79) [39].

Recently a family of two-component relativistic op-
erators h2k, which are accurate through the a2k order in
the ®ne structure constant, has been derived [24]. None
of them involve essentially singular operators and their
a2k expansion gives the Pauli approximation as the
leading relativistic term. Thus, if w2k is an eigenstate of
h2k, the expectation value, de®ned in analogy to (87), will
carry an error of the order of a2 in comparison with the
exact DPT result. A remedy is provided by the replace-
ment of V by V 0 in the given h2k Hamiltonian, i.e. by the
change of picture for the perturbation operator. This
follows exactly the route described in Sect. 3.2 for the
Pauli approximation. In comparison with the analogous
procedure applied to the DK Hamiltonian [39], the h2k
operators in the presence of the external perturbation
require only a rede®nition of the h01 operator, which is
replaced by relatively simple commutators [24].

4 A case study: the expectation value of the rÿ1 operator
for hydrogenic ions

The conclusion that follows from the general treatment
presented in Sects 2 and 3 is that all results obtained just
by taking the average of the given operator over some
approximate two- or one-component wave relativistic
wave function will introduce certain error already in
terms of the order of a2. In some cases this can be
avoided by transforming the operator in question into a
new picture provided the method of approximation for
relativistic e�ects is by itself accurate through terms of
the order of a2 in the wave function.

The use of the standard de®nition of expectation
values without any reference to the changed picture is
the easiest, most convenient, and fairly common way of
performing their calculations. It is therefore worthwhile
studying this problem in detail for an operator whose
expectation value may be expected to be strongly
a�ected by di�erences between methods used for its
calculation. The rÿ1 operator satis®es this requirement
because of the weak singularity whose presence makes,
at least for deep core states, considerable di�erence be-
tween relativistic and non-relativistic expectation values.
For present illustrative purposes, we consider a hydro-
genic system with the nucleus of charge Z perturbed by a
small term of the form lrÿ1. Atomic units are used
throughout this paper.

A general solution for the two-component non-rela-
tivistic problem with spin is well known to be (see e.g.
[50]):

w00 � w00
nj�ls�;mj

� NnlFnl�x�Yj�ls�;mj�X; r�; �88�
where Yj�ls�;mj�X; r� is the spin and angular part
depending on spherical angles X � �h;/� and spin r.
The radial part Fnl�x�, x � �2Z=n�r, is:
Fnl�x� � xleÿx=2L2l�1

nÿlÿ1�x�; �89�
with L2l�1

nÿlÿ1�x� denoting the Laguerre polynomials [50,
51] and the normalization factor Nnl given by:

Nnl � 2

n2
Z3=2

������������������������
�nÿ lÿ 1�!
�n� l�!

s
: �90�

The non-relativistic eigenenergy corresponding to the
state w00

nj�ls�;mj
is �00 � �nj�ls� � �00n � ÿZ2=2n2. The ®rst-

order perturbed wave function w01 � w01
nj�ls�;mj

for the

lrÿ1 perturbation of the w00
nj�ls�;mj

state reads:

w01
nj�ls�;mj

� 1

Z
Nnlxleÿx=2

ÿ 3
2
ÿ l� 1

2
x

� �
L2l�1

nÿlÿ1�x� � xL2l�2
nÿlÿ2�x�

� �
Yj�ls�;mj�X; r�

�91�
and the non-relativistic expectation value of rÿ1 is
known [50] to be:

�01 � �nj�ls� � �01n �
Z
n2

�92�
The exact ®rst-order relativistic correction �21nj�ls�
obtained from the DPT approach is:

�21nj�ls� � ÿ
3

2

Z3

n4
� Z3

n3
1

l� 1
2

2ÿ dl;0 ÿ j�j� 1� ÿ l�l� 1� ÿ s�s� 1�
l�l� 1� �1ÿ dl;0�

� �
�93�

and depends on the quantum numbers l and s of the
reference state and the coupling between the angular
momenta l and s, leading to the total angular momen-
tum j with the associated quantum number j = j l� 1

2 j
[50]. This DPT result can be easily derived from the total
relativistic energy expression for a hydrogenic system
with the nuclear charge Z ÿ l [50]. In the case of the
l � 0, i.e. j � s � 1=2 states, the DPT correction reduces
to:

�21n12�012� �
Z3

2n4
�4nÿ 3�: �94�

Once the `picture' change for the operator rÿ1 is taken
into account, the Pauli [see Eq. (54)], FORA (see
Sect. 3.3), DK, and all other approximations (see Sect.
3.4), whose leading term in the a2 expansion is the Pauli
operator, will give a result equal to �21 of the DPT
method, provided the exact solutions for w00 and w01 of
the state under consideration are used. It should be
pointed out that this statement automatically applies to
all h2k; k � 1; 2; . . . ; Hamiltonians [24] discussed in

267



Section 3.4. Di�erences between the above-mentioned
methods and their disagreement with the results of DPT
will occur, depending on the method, in contributions of
appropriately higher-order in a2.

For methods whose a2 expansion does not bring about
the complete Pauli approximation in spite of the picture
change, e.g. in the case of the ZORA scheme, the ®rst-
order relativistic correction turns out to be di�erent from
that given by Eq. (93). According to Eq. (68) the �21

correction to the expectation value of the rÿ1 operator in
the ZORA method di�ers from the DPT result by:

�21nj�ls� ÿ �21nj�ls�;ZORA � ÿ
Z3

2n4
�95�

and the di�erence is independent of the angular
quantum numbers. Similarly, calculating the expectation
value of rÿ1 directly from the four-component ZORA/
CPD (CPD-4) wave function leads to the following error
in �21 [see Eq. (84)]:

�21nj�ls� ÿ �21nj�ls�;CPDÿ4 � ÿ
Z3

4n4
: �96�

It should be stressed that this result, which follows from
the evaluation of the expectation value of H1 of Eq. (6)
according to Eq. (8) is compatible with the change of
picture. The non-zero value of (96) indicates only that
the CPD-4 wave function is an approximation to the
true solution of the Dirac equation and carries some
inaccuracies already in the order of a2.

Of particular interest is the error involved in calcu-
lations of expectation values according to Eq. (11), i.e.
without changing picture for h01 in spite of using two-
component functions derived by approximate block-di-
agonalization (unitary transformation) of the initial
Dirac Hamiltonian (12). The ®rst-order relativistic cor-
rections ~�21 to �01 derived in this paper lead to:

�21nj�ls� ÿ ~�21nj�ls�;P �
1

4

Z3

n3
1

l� 1
2

dl;0 ÿ j�j� 1� ÿ l�l� 1� ÿ s�s� 1�
l�l� 1� �1ÿ dl;0�

� �
; �97�

�21nj�ls� ÿ ~�21nj�ls�;ZORA � ÿ
3

4

Z3

n4
� 1

4

Z3

n3
1

l� 1
2�

2ÿ dl;0 ÿ j�j� 1� ÿ l�l� 1� ÿ s�s� 1�
l�l� 1� �1ÿ dl;0�

�
;

�98�
and

�21nj�ls� ÿ ~�21nj�ls�;sÿZORA � ÿ
1

2

Z3

n4
� 1

4

Z3

n3
1

l� 1
2�

2ÿ dl;0 ÿ j�j� 1� ÿ l�l� 1� ÿ s�s� 1�
l�l� 1� �1ÿ dl;0�

�
;

�99�
for the Pauli [see Eq. (60)], ZORA [see Eq. (76)], and
scaled ZORA [see Eq. (86)] approximations, respective-
ly. One should mention that the error introduced by
using the expectation value de®nition with reference to

h01 in the old picture [see Eq. (11)] within the context of
the Pauli approximation will be exactly the same for all
methods whose approximate relativistic Hamiltonians
give the Pauli approximation as the leading term of the
a2 expansion. Thus, Eq. (97) applies also to the results
calculated with wave functions resulting from the use of
the FORA, DK, and h2k Hamiltonians. The error in the
relativistic correction to �01 will therefore occur already
in terms of the order of a2 independently of how
accurate the given approximation for a two-component
wave function is.

It is also worthwhile noting that the use of the �21

de®nitions, which comply with the change of picture,
re¯ects directly the accuracy of approximate relativistic
wave functions. For approximate wave functions studied
in this paper, which involve inaccuracies in the order of
a2 (ZORA and CPD-4 functions), the a2-order error in
�21 turns out to be independent of the angular part of the
wave function and proportional to nÿ4. When the ex-
pectation values are calculated by referring to the de®-
nition (11), the a2-order error is found to depend, for
methods considered in this paper, also on the angular
part of the wave function and will a�ect the values of the
spin-orbit contribution to the expectation value of rÿ1.
The leading contribution to this error will be propor-
tional to nÿ3, and hence, in general larger than that for
methods compatible with the change of picture for h01.

In the case of the l � 0 states the error formulae (97)±
(99) simplify to:

�21n12�012� ÿ ~�21n12�012�;P �
1

2

Z3

n3
; �100�

�21n12�012� ÿ ~�21n12�012�;ZORA �
1

4

Z3

n4
�2nÿ 3�; �101�

�21n12�012� ÿ ~�n12�012�;sÿZORA21 � 1

2

Z3

n4
�nÿ 1�: �102�

These formulae show that for large enough values of n,
the error in the ®rst-order relativistic correction to �01

resulting from the use of either of the three approxima-
tions is approximately equal to Z3=2n3 and makes about
25% of the exact DPT value of �21 [see Eq. (94)]. This is
to be compared with the large n behaviour of errors
involved in �21nj�ls�;ZORA and �21nj�ls�;CPDÿ4 given by Eqs. (95)

and (96), respectively. For large n the relative value of
these errors taken with respect to the DPT result (94)
diminishes as nÿ1. This is compatible with the fact that
the relativistic contributions to the wave function
diminish with the increase of the principal quantum
number, thereby reducing the error introduced by the
approximate way of passing from the four- to two-
component representation.

The present illustration re¯ects some features of �21 as
calculated in di�erent approximations for weakly-sin-
gular operator rÿ1. The inaccuracies, which follow from
either the use of Hamiltonians that do not produce the
Pauli operator in their a2 expansions or from the neglect
of the change of picture for the operator of interest, will
be even more important in the case of h01 with stronger
singularities. However, their importance for non-singu-
lar h01 operators, which assume large values far from the
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nucleus, will be diminished. This may explain the success
of using Eq. (11) in approximate relativistic calculations
of valence-determined properties like dipole or quadru-
pole moments [39]. The a2-order error becomes than
small enough that it can hardly be seen within the
accuracy limits of the calculated expectation values.

5 Summary and conclusions

The ®rst-order relativistic correction to the expectation
value of some one-electron operator H1 (h01) has been
derived for a variety of methods used in approximate
two- or one-component relativistic calculations. Though
quite obvious from the point of view of the route of
derivation of these methods, the change of picture for H1

(h01) is usually neglected and its expectation values are
evaluated according to Eq. (11). It has been shown that
in such cases the error in the calculated relativistic
contribution to ~�1 occurs already in terms of the order of
a2 independently of the accuracy of the approximate
two- or one-component relativistic wave function. The
importance of this error for di�erent two-component
relativistic methods is illustrated by calculations for a
hydrogenic system perturbed by rÿ1.

The present analysis shows that the neglect of the
picture change for operators in the evaluation of their
expectation values may lead to considerable errors in ~�1

as compared to the exact values given by DPT. The
magnitude of these errors depends obviously on the
form of h01 and the state under consideration. For deep
core shells and (non-essentially) singular operators, the
change of picture in the evaluation of their expectation
values appears to be necessary. For non-singular oper-
ators and valence states the neglect of the change of
picture will bring less signi®cant errors in the calculated
expectation values. Moreover, one has to take into ac-
count that most of the approximate two-component
relativistic operators (ZORA, FORA, DK, h2k) consid-
ered in this paper are based on a partial summation of
the in®nite operator series in a2. Once the expectation
value of h01 is obtained from Eq. (11) or equivalent ex-
pressions, the e�ect of higher-order terms is there and
may lead to some numerical compensation of errors.
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Appendix A

Equivalence between the Pauli and DPT relativistic
corrections to expectation values

As a matter of fact the equivalence between �21 as given
by the DPT expansion [see Eq. (33) of Sect. 2] and the
result of the Pauli approximation (57) is the consequence
of Eq. (10). However, it is useful and instructive to

obtain this result algebraically, since some parts of the
proof are used in the context of the analysis of other
methods.

Let us note that the Pauli operator (55) can be re-
written in the form:

h20P �
1

4
rpV rpÿ 1

8
�h00p2 � p2h00�

� 1

4
rpV rpÿ 1

8
�h00p2 ÿ p2��00 ÿ h00� � �00p2�:

�103�
If both w00 and w01 are the exact solutions of the zeroth-
and ®rst-order SchroÈ dinger equations, respectively, i.e. if

h00w00 � �00w00; �104�
and w01 is given by Eq. (39) with the reduced resolvent
operator de®ned by Eq. (40), then

��00 ÿ h00� j w01i � �1ÿ j w00ihw00 j�q j w00i; �105�
and

2Rehw00 j h20P j w01i � 2Rehw00 j h20 j w01i
� 1

8
hw00 j p2q� qp2 j w00i

ÿ 1

4
hw00 j rp�01rp j w00i:

�106�
By substituting this result into Eq. (57) one ®nds:

�21P � 2Rehw00 j h20 j w01i � hw00 j h21 j w00i � �21;
�107�

where h20 and h21 are de®ned by Eqs. (34) and (36),
respectively. Q.E.D.

This proof heavily relies on the assumption that both
w00 and w01 are the exact non-relativistic solutions. Once
this assumption becomes violated, as is often the case,
the DPT result will di�er from that of the Pauli ap-
proximation (57). It has already been pointed out by
Kutzelnigg et al. [35, 42, 48] that the explicit use of the
DPT formula (33) o�ers certain advantages and reduces

the error carried out by the Pauli result �21P for non-exact
solutions of the SchroÈ dinger equation. The accuracy of
these two approaches has been recently analysed by one
of the present authors [47].
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